AFB Halli’s Hornets at the fray.

If you want to see the defenses in the island please refer to post Blind man’s Bluff.


As the Boeing case is made to great extend Super Hornets and Growlers SEAD capabilites I chose to have 4 Growlers for 8 Rhinos. This reflects the USN ay of doing things so I think it would be a safe bet of going about it like this.

Loadouts are these. Sarvikuono 1 to 3 are the first wave in with Growlers 1 and 2 All are in SEAD/DEAD load out with AARMG missiles and JSOWs with cluster munitions. All of these first six planes will fly in high to max out the ranges of standoff weapons. I included in the first scenario also some bombdroppers and Sarvikuono 4 with MALD jammers.

Growlers are in short range SEAD configuration with 3 NG jammer pods and 2 AARGM missiles. To support them three F/A-18 Es are also in SEAD/DEAD configuration. They dont have jammers, but they have 2 AARGMS and 2 JSOWS with cluster munitions (yes yes, Princess Diana and all that, but humor me). Sarvikuono 4 is a support fighter that will carry the MALD load. MALD is remote jammer that can be parked just outside the weaponsrange of enemy so that MALD will effectively jam AD systems. As you can see in video.

After that there is two F/A-18 Es with 4 cluster bombs and two more with close air support loadout with AGM-179 JAGM pods. (sort of like hellfire but better) These can help in taking out the air defenses if needed.

The execution

First of all. I practiced the scenario like 10 times before I was confident that I can give somewhat accurate picture of what will happen. What is really enlightening that AARGMs and JSOWs cannot penetrate to the island unless there is jamming present. If there is not adequate jamming, Pantsir and TOR systems will shoot them down from the air in quick succession. So waht is really evident that Growler is indeed a game changer! Also there were multiple hits in practise runs but 3-5 times hit Rhino survived the hit and managed to return to the base. Unfortunately I was not able to find out what missile these were, ans it might be that somewhat lighter missiles might be less lethal.

I played the scenario three times this time around, and 1st time with 12 sorties. Rounds two and three I did with 6 (5 if you exclude the MALD carrier) that succeeded in taking down the SSM missile site, the area surveillance radar and S-300 system. “Winning” the scenario revolves around destroying these three higher level assets. Pantsir and TOR systems are meant to protect higher level assets, but don’t really pose threat in same level as S-300 poses.

I did the video on round 1, in which I keep the Growlers further away, but bring the MALDs jus off shore of the island. This blinds the AD systems in the Suursaari/Hogland island quite handily. This might also be why I did’t lose a single fighter in this scenario. Rounds two and three I did with Growlers up close and personal, and the Sarvikuono 1 to 3 to shoot from behind the jamming and firt take out the defenses in the northern part of island, then whack the big radar, and then take out the S-300 with JSOW or two. The PANTSIR in northern part usually takes 3-4 AARGMs before it is silenced, after which you can take the SSM site with JSOW.

Video is here. It is approx 24 minute long. Peculiarities of my English are mine. Here I use all 12 planes, but in later scenarious could accomplish about the same with five fighters.


I lost one Rhino in each of the last two scenarios. I think it is because the Sarvikuono 1-3 like to come closer to shoot the last missiles. I cant see reason for this, as taking out the northern tip of the Hogland defenses they shoot from over Kotka town. So it might be because of “Command modern warfare” or it might have to do with defilade, but I can’t say with any reasonable certainty.

Results of three rounds of simulation.

As evident the lethality of Rhino/Growler SEAD mission was not greatly affected of leaving half of the force at Halli AFB. Also what is evident that a lot of defensive missileas are fired with wery low kill probability. One has to, in all fairness, mention that Pantsirs and Tors managed to down some inbound ordnance in every scenario.

As I mentioned earlier, I don’t know why some Rhinos like to come too close after they have fired their ordnance. If I read the database right, there really is no reason to do so. Also there is more than 100 missiles in the containers for the air defenses, so I just didn’t wait and bait for them to empty magazines and then go for the kill.

I think that use of MALDs in round one prevented the loss of assets for ilmavoimat. That is because in environment where there are four Growlers and two MALDS blanketing ALL you frequencies, and you are rained upon with weapons launch of which you cant see, there is a precious little you can find, let alone target.

Use of more fighters might serve helpful if you want to take everything out and saturate the defenses, but that is a bit wasteful way of accomplishing this mission.

Posted in Uncategorized | Tagged , , , , , , , | 3 Comments

Blind man’s bluff in Suursaari Casino

I have been very delighted about the amount of reads I have gotten from abroad concerning the HX-program and my installments about fighter action in Archipelago sea. As a err say public service I thought it might be wiser to make same kind of posts in English so that, I humbly hope, the readers can continually come is and get their HX-simulations and analysis from epämuodikkaita ajatuksia.

The Finnish bid of HX figter replacement scenario is centered around seven scenarios Finnish airforce asked the sellers to address. I do not have the foggiest what these might be, so I have decided to make a guess what these might be. This time around we will be seeing how the HX fighters fare against modern/modernish Air defense complex situated in Suursaari.

The scenario

Suursaari used to be a part of Finland, and nowadays it is sort of a enclave of Soviet union pushed between Estonia and Finland. There actually IS an radar station on the island, but as a buildup for war I think there would most definitely be a long range Air defense complex as well.

Suursaari is, as you can see, rather close to finnish coast and only maybe a 130km from Helsinki. So it gives Russia a good lace for monitoring the Finnish southern aerospace.

I dropped some assets for ir defense as well. I ventured for S-300 Systemin its most modern form protected by exessive amount of Buk M1 and Pantsir systems. I have come to underrestand that Russians have not been too impressed with Patsir in Syria and have mostly been protecting the system with TORs since Israeli Air Force gave them good walloping earlier.

The place of radar in real life. I t is obviously at the highest point of the Suursaari. I placed other defensive assets to other high points for defense.

Russian defenses in place. BUK M1 plattoons have ample range to get into play from smaller islands without creating too target rich enviroment into the island.

So here you have the target. Lets get started with attacking force. The goal is to destroy the surveillance radar, S-300 system and SSM system. All else is extra. I try to take into account different Air forces different approaches to SEAD/DEAD warfare and most of all to give it a honest run. If there are anomalies i point them out.

First up are the Super Hornets.

Posted in HX-ohjelma, ilmavoimat, in English, SEAD, simulaatio, Skenaariot, Sotapelit | Tagged , | 1 Comment

Boeing julkaisi Loyal Wingman prototyypin Australiassa.

Jos haluat lukea aiheesta lisää kolmannella kotimaisella, niin Defense Newsillä on juttua.

Olen itsekin hieman aihetta käsitellyt tekstissä “Sitten Boeing vetäisi ässän hihasta” juurikin koskien tätä Boeing Australian Loyal Wingman dronea. Kyseinen Drone on nyt siis prototyyppinä olemassa, ja Boeing on osoittanut, että konetta voidaan lentää muodostelmassa etänä. (GeekWiren juttu) .

Tämä tarkoittaa, että Loyal Wingmania voidaan käyttää tiedustelu- tai ElSosovelluksiin, sekä sensorialustana. Sensorialustana toimiessaan tämä huomattavan vaikeasti havaittava drooni. Tällöin drooni edessä havaitsee kohteita, jolloin vielä näkymättömissä takana oleva ampuja pääsee ampumaan pitkän kantaman ohjuksia

HX-ohjelmajohtaja Lauri Puranen kertoi, että loyal Wingman ei ole mukana tässä ensimäisessä tarjouksessa, mutta ymmärrettävästi jos valinta kohdistuu F/A-18 E/F/G pakettiin, saattaa tulla ajankohatiseksi tulevaisuudessa. Loyal Wingman ei siis ole mukana HX-tarjouksessa. Edelleen Puranen kertoi että droonit, yhtään kenenkään droonit tällä hetkellä, eivät ole vielä lähellekään samaa tasoa miehitetyn hävittäjän kanssa.

USAn laivasto esimerkiksi suunnitelee droonien käyttöä tukitehtävissä, kuten ilmatankkauksessa, mutta tekoäly on vielä kaukana skynetistä ja terminaattroiroboteista. Eli paljon virtaa vielä vettä Kymijoessa ennekuin toimivia isoja drooneja Suomen ilmavoimilla on.

Posted in Aseet, elektroniikka, HX-ohjelma | Tagged , , , | Leave a comment

Hyvä juttu miksi Growler oli Suomelle niin suunnaattoman tärkeä!

Oli juttu kopioitu osoitteesta . Vahva lukusuositus. Koitan jos saisi aikaan jonkinmoisen retostelun aiheesta. Jutun alkuperäinen kirjoitta Mark Ayton.

A Deeper Growl

By Mark Ayton -April 15, 2020

An EA-18G Growler assigned to Air Test and Evaluation Squadron 23 loaded with a ALQ-249 Next Gen Jammer pod on station 3 (middle).

One of the most powerful weapon systems in America’s arsenal, the EA-18G Growler,  is about to get even better with the introduction of the Next Gen Jammer.

Pacific Fleet;dc_ver=55.153;dc_eid=40004001;sz=300×250;osdl=1;u_sd=1;dc_adk=3844140137;ord=jlzovb;dc_rfl=0,$0;xdt=0;crlt=I18F3sFpsu;sttr=20;prcl=s?

Today, all Boeing EA-18G Growler aircraft are assigned to bases located around the Pacific. Naval Air Station Whidbey Island in Washington state is the EA-18G Growler master jet base. Whidbey is also home to Commander, Electronic Attack Wing, US Pacific Fleet, the parent wing for all Growler-equipped Electronic Attack Squadrons; a fleet replacement squadron, nine carrier-assigned squadrons and five land-based joint expeditionary squadrons. The latter are manned by both US Navy (USN) and US Air Force (USAF) personnel. One of the carrier-assigned squadrons is based at Marine Corps Air Station Iwakuni in Japan.

Both the carrier-assigned and land-based Growler squadrons regularly deployed around the Pacific theatre. Joint expeditionary squadrons deploy to Misawa Air Base in northern Japan, Kadena Air Base, Okinawa, Anderson Air Base, Guam and Australia. Squadrons assigned to Pacific Fleet carriers transit across the theatre on regular deployments to the Persian Gulf, and on short cruises to participate in major exercises such as RIMPACValiant Shield and Northern Edge. These collective deployments make a much greater footprint around the Pacific theatre compared to those staged in the European and Central Command theatres.

However, the Growler’s Pacific theatre footprint is not just down to the USN, as Australia also operates the EA-18G with a single Royal Australian Air Force (RAAF) squadron based at RAAF Base Amberley, Queensland. Despite its one-squadron force, the presence of Australian Growlers on the Pacific theatre’s southern flank, based within deployable range of many areas of South East Asia represents a formidable capability in a politically tense part of the world.

Royal Australian Air Force Growlers from No.6 Squadron prepare for a mission during Exercise Pitch Black 2018.


Back in 2001, the US Department of Defense (DoD) tasked the Department of the Navy to undertake an analysis of alternatives for a new-generation electronic attack aircraft.

The result of the study was the EA-18G Growler, a variant of the F/A-18F Super Hornet, built and configured as a stand-off and escort jammer for the USN. Now in its second decade of service, the EA-18G continues to be the only dedicated tactical electronic attack aircraft in the DoD’s inventory.

Captain Jason Denney, the F/A-18 Hornet and EA-18G Growler programme manager with Naval Air Systems Command’s PMA-265 said the aircraft has a fantastic ability to disrupt signals, deny communications, jam radars and provide crucial support and intelligence, not just to a Navy strike group, but deployed combatant commanders. “The Growler’s ability to work with all other aircraft, not just those in the carrier air wing but within the DoD, makes it a critical node operating with deployed Air Force, Army and Marine Corps expeditionary units; interoperability is a large key performance parameter for the Growler.”

The EA-18G’s primary antennas and sensors are housed in two Northrop Grumman ALQ-218 wing-tip pods with additional antennas located on the forward and aft of the aircraft appropriately separated so the system correctly processes signals.

Threats can be detected throughout the RF spectrum measured in small elements. The signal is handed over to a secondary receiver which measures very fine and parametric measurements of the frequency and amplitude. Geo-location of the threat is calculated by interferometry; measuring differences in phase, the waveform angle relative to the aircraft’s position in time.

Growler system software is embedded into the standard Super Hornet release but features a third level displaying all electronic attack options. Recognition of the aircraft’s electronic attack systems and the ALQ-218 activates the third level. Aircrew use HOTAS (hands on throttle and stick) controls to view, operate from and switch between all three levels of display.

One control capability of the advanced crew station is interlinking of the forward (pilot) and aft cockpits (electronic warfare officer or EWO) that allow the two crew to operate the aircraft and its system with full co-ordination; the EWO uses four primary displays in the aft cockpit which are inter-linked to the front seat.

Bring back (the stores load an aircraft is permitted to land back on the carrier’s flight deck with) is a design feature of all carrier-capable aircraft. Growlers only releasable stores (weapons) are AGM-88 HARM, AGM-88E AARGM and AIM-120 AMRAAM missiles; otherwise its full stores load has to return to the ship. During carrier suitability trials, VX-23 undertook gross-weight expansion testing to increase the Growler’s bring-back capability to 48,000lb (21,773kg) including fuels, up from the Super Hornet’s 44,000lb  (19,958kg) load. This involved launch and recovery operations using a test aircraft loaded to its heaviest configuration.

Catapult shots had to ensure tow-bar, nose-bar, gear and hook point loads were within the required limits for launching the aircraft. Arrested landings with a gross weight of 48,000lb were conducted under various simulated conditions to test de-acceleration, high-sink rate landings, roll/yaw offset landings and different attitudes.

Tactical jamming systems

However, the EA-18G aircraft is only part of the Growler weapons system. The electronic attack mission is conducted by the EDO ALQ-99 tactical jamming system in US Navy operation since 1971. Continual upgrades have enabled the ALQ-99 to remain relevant against potential threats from around the world. Different types of ALQ-99 pod are dedicated to notional wave bands and therefore target sets and what the attack solution should be.

Over the past 35 years, the ALQ-99 has been upgraded in different ways; by either wave band, by radio frequency exciter or by universal exciter. Back in 2005 the ALQ-99 system hit its technology ceiling. Certain new target sets can be accommodated with small tweaks to the system, those of a communication or asymmetric warfare type, but for the latest surface-to-air missile systems, the ceiling was inhibitive. New architecture was required.

An alternative of alternatives for a Next Generation Jammer (NGJ) was undertaken, and completed in April 2010. That November, a resources, requirements and review (R3) board sat at the Pentagon, which provided validation to build the system for use by the EA-18G. During 2010, technology and maturity contracts were awarded to Raytheon, Northrop Grumman, ITT with Boeing, and BAE Systems focussed on maturing the technology required for the context of the NGJ system.

Providing sufficient power and cooling for an electronic attack capability on a tactical size aircraft is a big challenge. There’s a trade-off between power and range which is constrained by physics; the more power the more generation required, but the EA-18G does not generate a lot of excess power so power generation needs to be built into the pod.

The ALQ-99 uses externally-mounted RAM air turbines, a pitched propeller that generates a lot of power. That’s not an option for the NGJ because the power required by its solid state and active array technologies is too great for an externally-mounted RAM air turbine as used by the ALQ-99; instead the pod uses an internal RAM air turbine generator dubbed the RAT G.

An EA-18G Growler from Electronic Attack Squadron 141 (VAQ-141) ‘Shad-owhawks’ lands on the flight deck aboard the aircraft carrier USS Ronald Reagan (CVN 76). Note the different side profiles of the under wing ALQ-99 pods compared to the centreline example.

Arrays also present unique challenges. An active electronically scanned array radar works best using a large flat plate, an arrangement that allows a good beam to be formed by focussing a lot of energy. Electronic attack is no different but for the requirement to have almost a 100 percent duty cycle active array for full-on jamming, which requires efficient beam formers and amplifiers. Use of gallium nitride circuits to enable close to 100 percent duty cycle jamming required this technology to be matured, such that development contracts were awarded to four companies in 2010. A follow-on contract for gallium nitride circuits was awarded to Raytheon in July 2013.

Next Generation Jammer

Under the Joint Electronics Type Designation System, the NGJ Mid-band is dubbed the ALQ-249; a high-powered, agile, electronic attack system capable of operating at stand-off ranges, attacking multiple targets simultaneously with advanced jamming techniques designed for rapid upgrades with a modular, open systems architecture.

Equipped with agile, active electronically scanned arrays and an all-digital back end, the ALQ-249 conducts precise jamming assignments against advanced and emerging threats operating throughout a wide range of radio frequency bands.

Confronted with integrated air defence system radars, communications, and data links, the ALQ-249’s ability to engage threat systems and conduct robust jamming at standoff distances is vital. Consequently, the ALQ-249 must provide sufficient effective isotropic radiated power (EIRP); the measured radiated (output) power of an antenna in a specific direction.

Once integrated on the EA-18G, the ALQ-249 will be capable of contributing to the full range of warfare from air strikes in anti-access/area denial environments to the type of irregular warfare encountered in Afghanistan.

The ALQ-249 pod is approximately 14ft (4.27m) long with a fuselage diameter close to 30 inches (760mm).

This image of a ALQ-249 NGJ Mid-band pod shows the aft and forward arrays.

NGJ Increments

One outcome of the November 2010 R3 board was to return the NGJ programme into incremental capabilities.

  • Increment 1 is the mid-band, which covers the most critical threat waveforms across a full spectrum of agile and adaptive communications, datalinks, and non-traditional radio frequency targets.

Increment 1 will be used to deny, degrade, or deceive use of the electromagnetic spectrum employing both reactive and pre-emptive jamming techniques and is currently in the Engineering and Manufacturing Development (EMD) phase.

  • Increment 2 is the low-band, which includes important threat waveforms and has an initial operating capability (IOC) targeted for after 2022.
  • Increment 3 is the high-band with an IOC after 2024. This will be housed in a smaller pod carried on the outer wing stations 2 and 10.

Naval Air Systems Command currently describes Increment 2 and Increment 3 as planned future efforts.

April 2016 was an important month for the NGJ Mid-Band programme; it received Milestone B approval to enter EMD, and Raytheon was awarded a 56-month contract valued at $1 billion for execution of the EMD phase. In accordance with the contract, Raytheon will deliver 15 engineering development model pods to be used for mission systems testing and qualification, and 14 aeromechanical pods for airworthiness certification.

On 27 April, 2017, the NGJ programme completed its critical design review which identified deficiencies that deemed a redesign of the pod structure, which caused schedule and cost breaches to the programme. Despite the structure redesign development, manufacturing, integration and testing of the antenna arrays, power generation system, software, common electronics unit continued, in accordance with the EA-18G H16 software integration schedule.

On 18 October, 2017, a memorandum of understanding was signed with Australia forming a joint program office and a cooperative development programme. The Royal Australian Air Force is the only other air arm currently operating the EA-18G Growler.


Naval Air System Command’s anechoic chamber at Patuxent River is currently occupied by an EA-18G Growler aircraft fitted with the first set of two engineering development model mission system pods.

The aircraft and pods were first placed in the chamber last November. To date they have undertaken over 400 hours of testing with both pods radiating to check basic pod functionality and to capture electromagnetic interference data. The latter being the measurement of radiation data which is used to ensure the pod does not overheat or adversely affect the aircraft and the aircrew. Data captured in the chamber is also being used to gain an interim flight clearance authorisation to operate a Growler aircraft fitted with a set of NGJ pods in non-standard configurations, flight envelopes, or conditions.

The chamber testing is now providing real data, as opposed to analysed data, for use in the mission system modelling process to begin validation of the system. Prior to that, extensive mission system modelling of the pod’s application to electronic attack and jamming was based entirely on analysed data captured from ALQ-99 pods in operational scenarios.

An interesting perspective of electronic attack activity radiated from two ALQ-249 NGJ mid-band pods.

Stores integration

Last summer, Raytheon delivered the first NGJ Mid-Band EMD pod to Patuxent River to begin initial stores integration. This includes verification of ground procedures, mass properties, aircraft installation, and built in test checks, all in preparation for chamber and flight testing.

Different types of tests require different configurations of pods such as fatigue, static, jettison and aeromechanical versions; the latter used for flying qualities and aircraft integration. Pods used for mission system testing are in full-up configuration with all of the sub-systems installed. Unsurprisingly mission system pods are expensive and are actually unnecessary for some elements of the flight test programme.

Prior to first flight, the NGJ pod is undergoing all of the standard tests required for stores integration. Static strength testing was completed in the early autumn of 2019. Once flights begin, a set of NGJ pods will undergo captive carriage tests; loads, environmental, flying qualities, performance, drag and structural integrity. Performance and jettison tests will follow as part of the employment phase.

Captain Orr described the forthcoming NGJ flight test programme as thorough and extensive, involving hundreds of missions. It will involve aero mechanical testing of the pod’s physical integration on the aircraft; mission systems testing of the pod’s performance, and ultimately carrier suitability testing.

Chamber testing will continue for quite some time as its focus changes to increased performance. Milestone C, the low-rate initial production decision, is anticipated at the end of FY2020. Flight testing is expected to start this spring and continue through most of 2021.

An operational test readiness review should take place by early 2022. If the review is successful, the NGJ pod will enter operational test that year, followed by an initial operating capability declaration in FY2022.

Growler’s continuous improvement

As part of the Growler’s road map, the aircraft is continually improved primarily by the roughly biennial introduction of new operational flight program software drops. As a backdrop to the latest H14 software, the previous H12 release included another phase of multi-sensor integration improvements, enhanced ALQ-218 geolocation, communication countermeasures set improvements, display improvements (symbology and crew-vehicle interface) to enhance air-to-surface, air-to-air and counter electronic attack sensor integration to manage aircrew workload, and additional capabilities to operate in ATC-controlled airspace.

The latest, H14, commenced operational test in October 2018, concluded earlier this year, and has just been released to the fleet to meet the latest operational requirements. Last March, Naval Air Systems Command staged numerous fire control missions in an electronic attack environment at the sea test range off the coast of California.

In July, live fire missile testing was undertaken to demonstrate the integration of the AIM-120 AMRAAM missile with the Super Hornet and Growler aircraft operating with the H14 software.

PMA-265 is now underway with the developmental test of the subsequent H16 software which will provide:

  • software and hardware upgrades to the ALQ-218 digital receiver
  • an open architecture, multi-level secure processor known as the Distributed Tactical Processor-Network (DTP-N) reckoned to be 17-times more powerful than the original Growler system
  • the Tactical Targeting Networking Technology (TTNT), a high throughput, low latency datalink called with satellite communications for advanced network connectivity.

Equipped with DTP-N and TTNT, a pair of Growlers will be able to fuse data acquired by on board and off board sensors to generate a common tactical picture of the battlespace and rapidly exchange that information with other assets. What does that achieve? It enhances targeting capabilities and improves air-to-air timelines and performance. This capability is scheduled to be implemented with several H-series software builds.

Back in August 2017, the Navy staged a series of fleet experiments called Netted Sensors 2017 conducted by the Navy Warfare Development Command involving, amongst others, F/A-18 Super Hornet and EA-18G Growler aircraft.

Focus of the experiments was sensor networking over the TTNT data link to enable distribution of information from around the maritime battlespace to all participating assets; aircraft, ships and shore stations.

EA-18Gs were focused on working a common tactical picture, multi-ship electronic surveillance, Growler manned-unmanned teaming, and network-centric collaborative targeting (NCCT) technologies. What does this all mean? It means using joint data standards and interfaces to speed up sensor cueing and targeting through to launching strikes in multi-sensor geolocation events.

Captain Denney outlined other initiatives to deliver new capability to the fleet faster to outpace potential threats, to improve and sustain aircraft mission capability rates by using predictive maintenance in order to spend time performing effective and proactive maintenance rather than reactive maintenance.

One change already in effect and in support of the above is migration from multi-sensor integration to multi-system integration. This allows for insertion of new technologies and requirements to keep pace with the fleet’s demands; this will continue with H16.

Block II Growler and the number one mission

Ongoing work is defining the Block II capability development programme, which will include conformal fuel tanks, in pretty much the same configuration as those under development for the Block III Super Hornet. Similarly, the advanced crew station featuring a large area display and low-profile head-up display will initially deploy on the Block III Super Hornet and then the Block II Growler.

Growlers are not equipped with a cannon, but the internal space is not left empty, it’s fitted out with an airborne electronic attack palette; this will be replaced with Block II to overcome obsolescence.

Given the relatively small fleet of aircraft, their ongoing utilisation rates, and an out-of-service date currently pitched for the mid-2040s, PMA-265 is already conducting a service life assessment programme to assess utilisation and when a service life extension programme will need to start. Captain Denney explained that because of the Growler’s utilisation, a service life extension programme will not start until after conversion to the Block II is complete. He said: “We are forecasting 2025 as the Block II IOC.”

When asked whether the PMA-265 team will be able to stay ahead of fast developing emerging threats, Captain Denney said it was the team’s number one mission: ”Our motto is to support, to sustain and advance the fleet. That is what we do, whether that’s getting the mission capability rate above 80 percent, or making sure the aircraft is able to fight and win against potential adversaries, that is why we make incremental improvements. We are developing the Block II Growler to exceed the capabilities of our potential adversaries.”

by Mark Ayton

Posted in Uncategorized | Tagged | Leave a comment

We does the time go? Minne rientää aika?

Hi all,

I started mechanical engineering studies and those take time. But I’m hoping to get another HX simulation out in easter time!

Aikaa kuluu opinnoissa, mutta toivottavasti saan seuraavan HX skenaarion pihalle pääsiäisen aikaan.

Posted in Uncategorized | Leave a comment

TiedusteluTiistai maaliskuu 2020 editio: Tiedustelulait ja Suomen tiedustelu. Mitä varsinaisesti on jäämässä käteen?

Ajatus tämän tekstin kirjoittamiseen tuli loistavan signaalitiedustelua koskevan kirjan GCHQ: Centenary Edition (Richard Aldrich, 2019) kuuntelemisesta. Siksi lähestyin SuPoa emailitse, ja sain kohteliaan vastauksen, jossa todettiin käytännössä että “emme kerro”. Tämä koska “operationaaliset syyt” Kysymykseni koskivat SuPon haavien läpi kulkevaa liikennettä ja sen volyymiä.

Uudet tiedustelulait astuivat voimaan 1.6.2019. Niiden myötä Suojelupoliisi ja Puolustuvoimen tiedustelulaitos saivat lainopillisen kehyksen toiminnalleen. Katselin FinLexistä, mitä lainsäätäjä on itseasissa säätänyt, mutta asiassa liikuttiin melko yleisissä sfääreissä. (laki sotilastiedustelusta, laki siviilitiedustelusta). Alla kopioituina tässä suhteessa meitä kiinnostavat pykälät “sotilastiedustelulaista” ja laista “Laki tietoliikennetiedustelusta siviilitiedustelussa”. Jätän tästä tarkasterlusta pois itsestään selvät seikat, eli salauksen purkamisen viesteistä ja vieraiden maiden signaalitiedustelun, ja keskityn ns jokahenkilöön kohdistuvaan lainsäädäntöön. Seuraavissa kappaleissa on kursivoituna lakitekstit, ja senjälkeen selvitän

37 § Televalvonta

Televalvonnalla tarkoitetaan tunnistamistietojen hankkimista viestistä, joka on lähetetty viestintäverkkoon kytketystä teleosoitteesta tai telepäätelaitteesta taikka vastaanotettu tällaiseen osoitteeseen tai laitteeseen, sekä teleosoitteen tai telepäätelaitteen sijaintitiedon hankkimista.

Sotilastiedusteluviranomaiselle voidaan antaa lupa valtiollisen toimijan hallussa olevaan tai sen muuten käyttämän teleosoitteen tai telepäätelaitteen televalvontaan tiedustelutehtävän suorittamiseksi.

Sotilastiedusteluviranomaiselle voidaan antaa lupa muun kuin valtiollisen toimijan hallussa olevaan tai hänen muuten käyttämän teleosoitteen tai telepäätelaitteen televalvontaan, jos sillä voidaan perustellusti olettaa olevan erittäin tärkeä merkitys tietojen saamiseksi tiedustelutehtävän kannalta.

38 § Televalvonnasta päättäminen

snip snip snip. Lue laista, jos kiinnostaa miten oikeudesta päätetään.

39 § Tukiasematietojen hankkiminen

Tukiasematietojen hankkimisella tarkoitetaan tiedon hankkimista tietyn tukiaseman kautta telejärjestelmään kirjautuneista tai kirjautuvista telepäätelaitteista ja teleosoitteista.

Sotilastiedusteluviranomaiselle voidaan antaa lupa tiedustelutehtävän kannalta merkittävien tukiasematietojen hankkimiseen.

40 § Tukiasematietojen hankkimisesta päättäminen

snip snip snip. Lue laista, jos kiinnostaa miten oikeudesta päätetään.

41 § Teleosoitteen tai telepäätelaitteen yksilöintitietojen hankkiminen

Sotilastiedusteluviranomainen saa tiedustelutehtävän suorittamiseksi hankkia teknisellä laitteella teleosoitteen tai telepäätelaitteen yksilöintitiedot.

Liikenne- ja viestintävirasto tarkastaa, ettei tekninen laite ominaisuuksiensa vuoksi aiheuttaa haitallista häiriötä yleisen viestintäverkon laitteille tai palveluille. Teleosoitteen tai telepäätelaitteen yksilöintitietojen hankkimisesta päättää tehtävään määrätty tiedustelumenetelmien käyttöön erityisesti perehtynyt sotilaslakimies tai muu virkamies.

42 § Laitteen, menetelmän tai ohjelmiston asentaminen ja poisottaminen

Sotilastiedusteluviranomaisen palveluksessa olevalla virkamiehellä on oikeus sijoittaa telekuunteluun, tietojen hankkimiseen telekuuntelun sijasta, televalvontaan, tekniseen kuunteluun, tekniseen katseluun, tekniseen seurantaan tai tekniseen laitetarkkailuun käytettävä laite, menetelmä tai ohjelmisto toimenpiteen kohteena olevaan esineeseen, aineeseen, omaisuuteen, tilaan tai muuhun paikkaan taikka tietojärjestelmään, jos mainitun tiedustelumenetelmän käyttö sitä edellyttää. Sotilastiedusteluviranomaisen virkamiehellä on tällöin oikeus laitteen, menetelmän tai ohjelmiston asentamiseksi, käyttöön ottamiseksi ja poistamiseksi salaa mennä edellä mainittuihin kohteisiin tai tietojärjestelmään sekä kiertää, purkaa tai muulla vastaavalla tavalla tilapäisesti ohittaa kohteen tai tietojärjestelmän suojaus tai haitata sitä. Laitteen, menetelmän tai ohjelmiston asentaminen tai sen poisottaminen ei saa tapahtua pysyväisluonteiseen asumiseen käytettävässä tilassa.

Eli edelläolevista lainkohdista käy ilmi, että sotilastiedusteluviranomainen saa kohdistaa teleliikenteeseen kohdistuvia toimenpiteitä myös yksityistä kansalaista kohden, jos voidaan olettaa terrorismi tai maanpetosrikosta. 37 § sanoo siis, että tunnistetiedot saadaan kerätä talteen. Laki ei sano kuinka kauan niitä säilytetään, mutta lähdetään siitä että tunnistiedot pysyvät SUPOn massamuisteissa toistaiseksi. Niillä ei tehdä mitään, vielä, mutta heti kun “joku tekijä”, tunnettu terroristi, akuutti uhka jostainpäin, tai muuten mielenkiintoinen tyyppi nousee listoille, voidaan käden käänteessä repäistä verkosto uhan tai tekijän ympärillä auki.

39 § taas kertoo, että kiinnostavan laitteen paikkatieto voidaan onkia esiin solun, eli käytännössä muutaman kymmenen metrin tarkkuudella. Kiintoisia henkilöitä siis voidaan seurata kännykän liikkeen perusteella myös. Tämä antaa jälleen mahdollisuuksia sosiogrammin piirtoon tarkkailemalla muita seurattavia kännyköitä samalla alueella. 41§ kertoo että teleosoitteen, eli todennäköisesti TCP/IP osoitteen tai telepäätelaitteen yksilöintiotiedon, eli MAC osoitteen saa hankkia selville. Näillä tiedoilla päästään yksilöimään laitteita ja ihmisiä joihin tietoliikenne kohdistuu. Vaikka Ville soittaa Vallelle. Valle on tuntematon suuruus, pykälän perusteella saa siis etsiä Vallenkin tiedot käsiinsä. 42 § taas antaa tiedustelijoille mahdollisuuden asentaa etänä tai fyysisesti seuranta tai vakoiluohjelmia laitteille. Ei kuitenkaan yksityisasunnoissa.

Ylläolevissa kuvissa kaksi Suomen verkkoliikenteen perusjuttua: Ylemmässä kuinka monta gigabittiä dataa kulkee sekunissa, ja toisessa kuinka monta megapakettia liikennesolmujen läpi kulkee sekunissa. Suomen tietoliikenteen määrä on suhteessa väkimäärään suuri, johtuen maamme kehittyneestä internet ja palvelutarjonnasta.

Suomen ulkomaille suuntautuvan teleliikenteen kunkinhetkisen tilan voi käydä tarkastamassa linkistä sivustolle. Voitte itse käydä täältä toteamasssa liikenteen laajuuden, jota SuPo ei halunnut kertoa. Kuten mainittu vihreät pylväät kukaavat liikennettä joka sekunti. Keskiarvo vuorokauden yli 33,5 gigabittiä dataa sekunissa. Paketteja kulkee noin 5 miljoonaa sekunnissa. Tämä on tiedustelun kannalta oleellinen tieto.

Analogiana internetin liikenteelle käy muinainen postin liikenne: kirjoitat kirjeen, laitat sen kirjekuoreen, kirjekuori postilaattikkoon. Laatikosta kirjekuori tipahtaa postisäkkiin, joka heitetään pakettiautoon. Pakettiauto ajaa postiin ja sieltä matka jatkui aikoinaan lajittelun jälkeen postiautolla eteenpäin, ja toisen kaupungin posti lähdettiin toisinpäin: säkit postiin, lajittelu, posteljoonin löaukkuun, sieltä postilaatikkoon ja edelleen kirjekuori omiin karvaisiin käsiin. Kuori auki ja viesti oli luettavissa. Helppoa ja ennekaikkea kirjesalaisuus säilyi.

Kun kirjoitat tänäpäivänä emailin, niin vaikka osoite on tietenkin kirjoitettu päälle, lähettää oma koneesi postin eteenpäin IEEE 802.1 standardin mukaan. IEEE määrittää pakettiverkkoratkaisun johonka “internet” perustuu. Email osoite kertoo mihinkä lokeroon posti loppujen lopuksi lupsahtaa, mutta pakettiverkko lähtee toimimaan IP-osoitteen ja MAC osoitteen perusteella. IP osoite on vaihtuva, mutta MAC osoite ei ole. MAC osoitetta ei voi vaihtaa; se on kovakoodattu laitteeseen. Nämä IP ja MAC osoitteet ovat “se asia”, jota tiedusteluviranomaiset nykyään haluavat.

Ylläolevassa kuvassa on toki mukana melko paljon “tyhjää” eli pakettiliikennettä, jossa palvelimet esimerkiksi huhuilevat toisilleen tai kuittaavat saapuneita paketteja. Tämä liikenne ei ole kiinnostavaa tiedustelupalveluiden mielestä, mutta paketit paikasta paikkaan ovat. Suurinta osaa ei ikinä tarvita, mutta kaikki liikenne tallennetaan, jos sitä satutaan tarvitsemaan. Tähän dataan kuuluvat vaikkapa whatsup puhelut, tai videopyynnöt youtube palvelimilta, tai oikeastaan mikä vain ei palvelimia ja niiden välistä liikenteen setvimistä koskeva liikenne.

Koska tällä keinolla voidaan päätelaitteita ja niiden omistajia sovittaa “suureen dataan” josta voidaan sopivilla ohjelmilla lähteä etsimään mitä ihmeellisempiä yhteyksiä päästään varsinaisen halutun tiedon äärelle. Sanotaan vaikka että henkilö AA on saatu kiinni vaikkapa terrorismisympatioista. Nyt päästään piirtämään verkkoa siitä keihin hän on ollut yhteydessä. Samalla voidaan vilkaista läpi vaikkapa tekstitiedostot joita hän on lukenut, tai webbisivut joilla hän on käynyt ja videot joita hän on katsonut. Niistä päästään piirtämään taas hieman tarkempaa kuvaa AAn mielenkiinnosta. Sanotaan että AA on toiminut värvääjänä, nyt päästään katsomaan keihin kaikkiin AA on ollut yhteyksissä, jotka eivät ole lähisukua tai ns kavereita.

Tästä listasta löydetään esimerkiksi yksilöt AB, AC ja AD. Tämän perusteella päästään katsomaan keitä nämä henkilöt ovat, ja keihin he ovat olleet yhteydessä kun AA on päästänyt heidät eteenpäin.Olkoon tämä henkilö vaikkapa BA. BA on rahamies, joka antaa rahaa matkustamista varten. Hän paljastuu siitä, että AA on häneen yhteyksissä harvoin, mutta suuri osa yksilöistä jotak ovat AAn kanssa tekemisissä lopettavat yhteydenpidon AAn kanssa ja ovat kerran tai pari yhteyksissä BBn kanssa. Sen jälkeen ollaan varaamassa lentoja Turkin lomakohteisiin viikoksi, joista jäädään palaamatta.

Tässä mielessä Al-Holin “ISIS mammat” olisi hyvä ottaa Suomeen, koska he paljastaisivat tahtoen tai tahtomattaan moninaita muita sympatiseeraajia ja rahanhankkijoita. Kuten lakitekstistä saatiin lukea kyseessä on sitten hallinnollinen päätös, kun terrorismi tai vakoiluepäily on päällä. Kun epäily on päällä luetaan kaikki tieto mitä ihmisestä on saatavilla. Tämän avulla päästään piirtelemään moniulotteista kuvaa kiinnostuksista ja yhteyksistä ja paljastamaan lisää yhteyksiä joihin mielenkiitoa voidaan kohdistaa. Siis vaikka viestejä ei avata tai ketään ei salakuunnella, pyustytään esimerkiksi organisaatiosta saamaan kuva viestiliikenteen perusteella.

Nämä kaikki siis saadaan työnalle tiedustelussa purkamatta yhtään viestiä. Varsinainen viestien salauksen purku aloitetaan vasta, kun mielenkiintoisia yksilöitä saadaan esille. Tietenkin terroristit pyrkivät väistämään tätä, esimerkiksi Pariisin iskujen tekijät väläittivät viestejä ja keskustelivat playstationin verkossa, jolloin viestiliikenne näytti pelaamiseen liittyvältä liikenteeltä.

Posted in elektroniikka, hybridisota, informaatiosota, sisäinen turvallisuus, teknologia, terrorismi, tiedustelu ja vakoilu | Tagged , , , , , , , , | 1 Comment

Sarvikuonoja Suomenlahdella

Jos Rafale on HX-kisan musta hevonen, on F/A-18E/F/G saman tarinan äänetön kostaja. Siinä on kaikki Hornetin hyvät puolet, mutta enemmän niitä: Massiivinen asekuorma, sille on tai siihen tulee saamaan KAIKKI, siis IHAN KAIKKI, lännessä tulossa olevat ja suunnittelupöydillä vielä kehittyvät aseet. Mikään muu HX-kandidaatti ei voi sanoa samaa, ei edes F-35. F-35 koneessa rajoittavana tekijänä on edelleen asekuilut, ja mitä sinne saa sopimaan. Voi tietenkin olla että kaikkia aseita ei HX koneelle tarvitakaan, mutta tämän koneen kyseessä ollen asia ei ainakaan riippuisi siitä voidaanko se sovittaa. Edelleen, vaikka tässä skenaarioharjoituksessa niitä ei käytetäkään, F/A-18 G Growler on maailman kehittynein vihollisen ilmatorjunnan lamauttamiseen tai tuhoamiseen suunniteltu kone. Mutta tästä lisää myöhemmissä skenaarioissa.

Suhoi Su-35:en L-taajuusalueen (aallonpituus n 30cm ja taajuus 1GHz) siipitutka erottaa Rhinon noin 120 merimailin päästä. AN/ANG-79 X-taajuusalueen (aallonpituus n 3cm ja taajuus noin 10GHz) tutka erottaa Suhoit samaan aikaan. Eroksi tulee se, että L-taajussalueen tutka ei, tietääkseni/julkisten lähteiden mukaan, anna ns “ampuma kelpoista” ratkaisua, vaan maali pitää edelleen löytää normisti X-taajuus tutkalla, jolla aseet saadaan lukittua. [Wikipediasta nopeasti taajuusalueista] L-taajuuden tutkalla siis etsitään koneet, että tiedetään, MISTÄ niitä voisi ammuttavaa X-taajuusalueen tulenjohtotukalla löytyä. Tämä on suora vastaus idästä lännessä kehitettävää häiveteknologiaa vastaan. Kuitenkin Superhornetin pienennetty tutkapoikkipinta antaa sille edun killchainissa. F/A-18 pääsee ampumaan ensin.

Skenaario noudattelee aikalailla samoja pääsuuntia kuin muillakin HX- kandidaateilla: Kun F/A-18E on päässyt partioalueelle alkaa se poimia kohteita, kun ne tulevat tutkan 120nm kantamalle (224 km). Kuten olen muualla maininnut niin AN/APG-79 tutka on joko HX kilpailun voimakkain tai toiseksi voimakkain tutka. Joka tapauksessa se on hyvin kehittynyt sensori ja edustaa USAn 9. polven tutkia. Kun VVS koneet havaitsevat jotakin tai tunnistavat F/A-18 E:t alkaa varsinainen taistelu.

Antonovit ovat vielä Peipsjärven takana. Kaikki 4 Pietarista tulevaa hävittäjää on havaittu ja tunnistettu. etäisyys noin 120nm.

Skenaariossa ei tapahdu tämän jälkeen oikein mitään ennekuin MiG-29 C SMT alaa saada häivähdyksiä läntisestä parista noin 50nm (92 km) päästä. Samaan aikaan alkaa F/A-18 E tutkavaroitin varoitella myös Kaliningradista tulevista koneista.

Venäläisten puolella saadaan kaikua jostakin koneesta. Edelleen huomautan, että Rhinot lentävät melkein poikittain tutkaan nähden, joten kaiku on paras mahdollinen MiGin tutkalle.
Rhinot näkevät kaiken. Kaliningradin pareja ei ole vielä tunnistettu, mutta ne on havaittu. Otin kuvaan mukaan simulaation antamat ilmoitukset havaitsevasta sensorista oikealle.

Kaiken kaikkiaan myös ilmataistelu toistui aikalailla samalla tavalla kuin muillakin 4++ sukupolven koneilla. Ilmaan jäi kuitenkin AMRAAM D (Kp 0,33) ohjuksilla yleensäottaen enemmän venäläisiä kuin Meteoreilla(Kp 0,5). Vaikka AMRAAM D:n hakupää hakee laajemmalta alueelta, sen kantama on hieman lyhyempi ja energia siten myös hieman pienempi. Sama kantaman ongelma asetti myös Rafalet alttiimmaksi venäläisten ohjuksille.

F/A-18 E:t Suomen turvana. Kyseessä erä 7, jos kiinnostaa kulutukset ja menetykset molemmin puolin.
Erä 9 oli aivan karmea Superhornetien kannalta: AMRAAM toisensa jälkeen meni ohi, ja vihulaiset pääsivät lähemmäs ja lähemmäs. Viimeinen alasammuttu Rhino oli vähän huonoonninen: se olisi saattanut selvitä takaisin Pirkkalaan, mutta molemmat moottorit saivat pahoja osumia.

Venäläisten ohjuksien osumaprosentti jäi edelleen vaatimattomaksi, ja F/A-18 kalusto sai 0,67/8.23 eli 6 suhde 33 pudotustilaston. Ei ollenkaan huono. Sanoisin että näissä skenaarioissa Rhinojen ongelma oli AMRAAM ohjukset, ei se että kone häpeäisi ominaisuuksissa HX-ohjelman EuroCanardeille.

Posted in HX-ohjelma, ilmavoimat, simulaatio, Skenaariot, Sotapelit | Tagged , , , , , , , | 4 Comments

Salamointia Lounasirannikolla

F-35 on suunniteltu erilaiseen taisteluun kuin muut HX-kilpailutuksessa olevat hävittäjät: F-35 elää ja kuolee häiveominaisuuksiensa mukana. Pelasin jälleen 9 simulaatioita, mutta pian kävi selväksi, että jos tilanne lähtee samasta tilanteesta kuin muillakin HX koneilla, tekevät huomattavasti liikehtimiskykyisemmät MiGit ja Suhoit saslikkia Lightningeistä: Kolme ensimäistä simulaatiota johti väistämättä läntisen F-35 parin pudotukseen. Kun partioalueita vedettiin hieman taaemmas, tämä ongelma poistui, mutta taistelu alkaa suomalaisten päätöksellä. Edelleen tarkoitus ei ole laittaa mitään HX-kandidaattia muita huonompaan asemaan, vaan olla niin reilu kun voi olla.

Edelleen käytin parissa simulaatiossa USAF F-35 koneita heikäläisittäin raskaimmalla mahdollisella ilmatorjuntavarustuksella. Se oli vaatimaton 4 AIM-120D ohjusta ja kaksi uusinta sidewinderiä. Periaatteessa 100% osumilla ne riittäisivät, mutta harvoin niin pelissä käy. Paras osumaprosentti tuli, kun ammuttiin vain yhtä ohjusta per maali, mutta se johti siihen, että Suhoi-27 SMT pari pääsi ampumaan, ja sai lopulta saaliiksi yhden F-35Bn (Tässä skenaariossa käytin brittien Lightning B versioita, joissa on ilmataistelukuormana 6 meteoria ja 2 ASRAAMia.) Parempi vertailukelpoisuus saman ohjusmäärän ja ohjusten takia.

F-35 Barracuda omasuoja järjestelmä on todella hyvä! Barracuda poimi kaikki käynnistyvät tutkat välittömästi kun ne tulivat tutkahorisontin yli. Tähän lienee paikallaan disclaimeri, Vaikka Barracudan herkkyyttä olisi liioiteltu vaikka puolet, se havaitsi silti ensimäisenä etelästä Kaliningradista tulevat hävittäjät. Tälläkertaa isot Antonovit saatiin viimeksi näkyviin. niillä kun ei aktiivisia tutkia ollut.

Pitkä suorakaide etelässä kertoo, että koneista ei ole vielä tunnistettu (se tapahtui noin 5 sekuntia myöhemmin). Suorakaide kertoo suunnan ja minimi ja maksimi etäisyyden kohteeseen. Vaikuttava sensori tuo Barracuda
Tämä skenaario, numero 3 johti nopeasti F-35 pudotukseen. Kone tuli näkyviin, kun se käänsi kylkensä kohti etelästä porhaltavaa SU-35 konetta. Tämän jälkeen paikka saatiin selville ja SU-27 lähti tutkimaan aluetta, ja ampui nopeasti molemmat F-35 alas. Liikehtimiskyvyltään F-35 on laamoin HX-kandidaateista, mutta jos joudut sillä liikehtimään, niin teit jo jotain väärin.

Kun jonkinmoinen kaiku F-35:ista oli saatu, poimi SU-27 SMT ne ilmasta IRST sensorilla. Tämän jälkeen iso Suhoi pääsi nopeasti ampumaan ja pudotti parin. Edelleen F-35 ei ole suunniteltu samalla tavalla kuin esimerkiksi F-15 ja F-16. Se ei ole erityisen liikkuva kone. Sillä on vaikea väistää ohjuksia. Parempi siis, että niitä ei tule lähelle.

Alla lensin koneet niin lähekkäin toisiaan että tutkakaiku saatiin suoraan edestä. L-taajuudella Su-35:n PESA tutka poimi F-35 parin 61 merimailin päästä. Edelleen kun kone oli kyljittäin tutkaa kohti. Tämä mukana vain kokeena, ei simulaatiossa. F-35 putosivat nopeasti tämän jälkeen.

Edelleen venäläisten puolelta katsotaan. Lightning tuli esiin L-taajuusalueen tutkalla: Juuri ja juuri ohjuskantamalla. Meteor voisi olla jo perillä.

F-35 AN/APG-81 tutkassa on 1200T/R elementtiä, eli se on ainakin elementtien määrällä laskettuna ehkä voimakkain HX tutkista (Mahdollisesti Superhornetin tutka on yhtä voimakas tai voimakkaampi) ja sillä havaintoetäisyydet ovat hyvin kunnioitettavat. Alla myös isot antonovit saadaan esiin välkkeestä.

Aika pitkälle Salaman silmä kantaa. Melkein kaikki mahdoillinen, tavalla tai toisella, näkyvissä

Ensimäinen video Lightningien ilmataistelusta

Kuten sanoin käytin sekä USAF f-35 A versiota sekä Brittien B versiota eri skenaarioissa. Sinänsä suorituksissa ei ollut muita eroja kuin se, että USAF ilmaherruuskuormassa oli vähemmän ohjuksia kuin briteillä. Muuten koneet suorituivat aikalailla samoin skenaariossa: AMRAAM D:llä on laajemmalta alueelta hakeva hakupää loppupelissä, ja Meteorilla on pidempi kantama. Muuten molemmat toimivat samoin.

Kuten sanottu, yritin ensin vetää yhtenäistä linjaa siitä, että vihollisuudet alkavat venäläisten havainnosta, mutta se johti kohtuuttomiin tappioihin. Tässä kuitenkin tulokset.

Kolmas skenaario oli F-35A, ja venäläisten havainnosta. Viimeisessä skenaariossa SU-27 pääsi luiskahtamaan ohjusten läpi lähelle, ja sai pudotuksen. Onnenkantamoisena voi pitää 2. ajoa, jossa neljällä vanhahkolla AA-10 ohjuksella saatiin kaksi pudotusta.

EDIT 10.2.2020 klo 1800 Tuossa viimeisessä kierroksessa tullut pudotus oli siinä mielessä erikoinen, että se oli samanlainen tapaus kun Typhoonilla tapahtunut. F-35 selvisi osumasta, mutta moottori hajosi, jolloin kone oli pakko jättää. Samassa tilanteessa Typhoon pystyi palaamaan yhdellä moottorilla Pirkkalaan. Tämä tapahtui kokeiluvaiheessa, joten se ei näy listoilla.

Posted in HX-ohjelma, simulaatio, Skenaariot, Sotapelit | Tagged , , , , | Leave a comment

Aarnikotkat Turun yllä

Ihan ensimäiseksi on sanottava Command Modern Warfare ympäristöstä, että se ei ole SOTILAS simulaattori, vaan se on kaupallinen simulaattori. Epäilen, että siinä saattaa olla etuja Amerikkalaiselle kalustolle, mutta mitä olen havainnut, se antaa kuitenkin hyvän kuvan siitä miten nykyaikainen ilmataistelu etenee. Kuitenkin CMW nojaa julkisiin lähteisiin joten se ei voi antaa yhtä hyvää ennustetta kuin salattua tietoa käyttöön saavat simulaattorit antavat. Kuitenkin voidaan oletta sen pystyvän ennustamaan tapahtumakulun noin 7,5-8 arvosanalla. Sanoisin siis, että perusasiat ovat kunnossa, mutta nyassit jäävät puuttumaan.

Ensimäinen havainto lentokoneista taivaalla. 30 minuuttia aikaa on kulunut.

Kuten huomataan Gripen huomasi Antonov 12 parven kuusi minuuttia myöhemmin kuin Rafale ja Typhoon. Tämä saattaa johtua osittain sattumasta, siitä miten Gripenit partioalueellaan liikkuvat, mutta enimäkseen se johtuu siitä että Gripen En nokkakartio on pienempi kuin Typhoonin ja Rafalen vastaavat. Silloin kartioon mahtuu kapeampi tutkalevy. Kapeampaan tutkalevyyn mahtuu vähemmän elementtejä. Mitä vähemmän elementtejä, sitä pienempi lähetysteho, ja sitä huonompi resoluutio tutkalla on. Kuitenkin kannattaa muistaa että samainen Leonardo tekee sekä Gripen että Typhoonin tutkat. Osaamisen kannalta sinänsä ei siis eroja ole.

Sama hetki jumalmoodissa. Muutakin on tutkan keilassa, mutta ei tule näkyville asti.
Pari minuuttia myöhemmin myös Su-27 pari on tutkalla.
Sama jumalmoodissa

Tutkan lähetysteho ja resoluutio ovat tärkeitä ominaisuuksia silloin, kun halutaan tietää, mitä se tutka oikeasti näkee. Tämä riippuu paljon siitä, minkälainen määrä T/R elementtejä tutkissa on. Tästä enemmän TÄÄLLÄ. Voi tietenkin olla myös, että Command Modern warfaren tietokannan ylläpitäjät eivät aivan viimeistä päälle ylläpidä/päivitä jonkun pohjoismaan tutkia.

Nyt alkaa näkyä kaikki. Huomattavaa on, että Gripeneiden havainnut sensori oli BOW-21 tutkavaroitinjärjestelmä. Tämän takia keltainen neliö on aika iso. Kulmavirhettä on paljon, ja etäisyyden arvioiminen vaikeaa.
Su-35 havaitsi Gripenit samaan aikaan siivissä olevilla L-taajuuden (1-2 GHz taajuuden) tutkalla.

Toisaalta epäilen, että SAABilla on hyvin tiedossa koneen koon aiheuttamat rajoitukset sähköteholle ja tilalle. Kannattaa muistaa että SAAB tarjoaa mukaan GlobalEye miniAWACS konetta kaksi kappalein mukaan Suomeen. Golbal Eye onkin sitten jo peli, joka olisi nähnyt kaikki koneet tässä skenaariossa heti kun ne tulisivat tutkahorisontin yläpuolelle.

Gripenit Saaristomerellä.

Kuten nähdään, ei Gripenillä huonosti mennyt, jostain syystä halusivat ottaa enemmän ylipitkiä yrityksiä kuljetuskoneisiin Suomenlahdella. Jonkinmoinen onnenkantamoinen oli VVS puolella peli 7, jossa neljällä ohjuksella saatiin kaksi Gripeniä alas, kun välillä kymmenellä ei saatu yhtään. Paljon riippui siitä pystyivätkö Gripenit pysymään ulkokantamalla SU-35 ja MiG-35 koneista. Mig 29 ja SU-27 eivät yleensä päässeet edes ampumaan.

Joskus kaikki menee hienosti putkeen. Meteorien osumatodennäköisyys 75% Tuplanopeudella.
Posted in HX-ohjelma, hypoteesitilanne, simulaatio, sotapelit, Sotapelit, Tilanne päällä | Tagged , , , | 3 Comments

Lokit Ahvenamaan Suojana

Tänään maanataina HX challengeen saapuvat Dassaultin Rafale C- ja B-hävittäjät. Tämän takia on sitten Rafale parven vuoro päästä torjumaan laskuvarjopudotusta Maarianhaminaan. Jos haluat katsoa videon ensin, se on alimaisena.

Skenaario on täysin sama kuin Typhooneilla aikaisemmin, mutta nyt kyseessä ovat eri koneet. Rafalen ja Typhoonin pitäisi olla hyvin toistensa kaltaisia alustoja. Erona se, että Rafale on optimoitu ilmasta maahan toimintaa varten. Kone on vähän hitaampi, ja asekuorma on vastaavasti suurempi. Ohjuksia Rafaleilla on 4 Meteoria ja kaksi infrapuna MICAa ja kaksi tutkaohjautuvaa MICAa. (Typhooneilla 6 meteoria ja kaksi ASRAAMia)

Antonovit on helpohko löytää kokonsa ja kaikenlaisten häiveominaisuuksien puutten vuoksi. Antonov 12 Bt ovat vielä keltaisina, koska niitä ei ole tunnistettu. Simulaatio on pyörinyt 25 minuuttia.

MICA ohjusten kantama on lyhyempi kuin Metorilla, mutta pidempi kuin ASRAAMeilla. Se, että infrapuna ja tutkahakuisia ohjuksia voi ampua sekaisin, vaikeuttaa vastapuolen toimintaa. Liikehtiminen auttaa mitä ohjusta vastaan vain, mutta infrapunaohjus saa paremman maalin, jos sille kääntää suoraan selkänsä.

Kaikki idästä lähestyvät koneet havaittu ajassa 36 minuuttia.
Minuuttia myöhemmin etelästä lähestyviä koneita alkaa tulla näkyviin.
37 min Venäläiset eivät ole havainneet vielä mitään.
Sama kuva jumalmoodista. Länsimainen avioniikka vetää jälleen pidemmän korren.
41 minuuttia kulunut MiG-35 tekee viimein havainnon, mutta ei kykene tunnistamaan Rafalea. MiG-35 tunkeutuu Suomen ilmatilaan tunnistamaan, ketä siellä liikkuu. Tässävaiheessa alkaa taistelu.

Koneiden liikkuminen partioalueella on satunnaista, joten koneet eivät välttämättä ole heti ampuma-asemassa. Kuitenkin heti kun vihollisuudet alkavat, alkavat koneet havaintojensa mukaan asettua ampuma-asemaan ja tuikkimaan puikkoja taivaalle.

Vaikka pelatuissa skenaarioissa kolmessa menetettiin yksi Rafale ja yhdessä kaksi, se ei minusta kerro sinänsä, että Rafale olisi “huonompi hävittäjä”. Rafalen SPECTRE omasuojajärjestelmää pidetään, jopa parempana kuin PRETORIAN systeemiä. (MITÄÄN kovaa dataa tästä ei ole saatavilla, mutta “isot pojat kertoi”)

Edelleen kannattaa huomata, että AA-12 ja AA-10 ohjusten osumaprosentti jäi alle kymmeneen yhdeksän simulaatiokierroksen jälkeen. Typhooneja ei vain päästy ampumaan samassa mitassa. (Kun testailin skenaarioita, sai yksi Typhoon osumaa, mutta pääsi palaamaan Pirkkalaan). Tätä selittää minusta se, että Rafaleilla oli kullakin neljä Meteoria, kun meteorit oli ammuttu, oli pakko liikkua lähemmäs, että MICA-ohjusten kantama riittää. Huono puoli on siinä, että silloin R-77-1 kantaa myös perille. Eli on todennäköistä, että kuudella Meteorilla ja kahdella MICAlla tilanne olisi näyttänyt samalta. (Käytän skenaariossa aina kunkin valtion omaa raskainta ilmaherruus pakettia.)

Rafale ja typhoon tekivät havainnot jotakuinkin samaan aikaan, ja koneet havaittiin myös kutakuinkin samaan aikaan, joten tutkan tai häiveominaisuuksien puolesta koneilla ei ole suurta eroa.

Sitten itse videoon. viedo ja ääni omaa tuotantoa.
Kuvassa Rafaleiden huonoin veto. Kolmas pari Pirkkalasta on jo joutunut puuttumaan peliin. Ilmassa on kuitenkin vielä 5 venäläishävittäjää. Keskeytin pelin, koska tarkoitus on katsoa mitä kahdella parilla saa aikaan.
Posted in Buildup to war, HX-ohjelma, ilmavoimat, Jotain aivan muuta, simulaatio, Skenaariot, sotapelit, Sotapelit, War in Baltic Region | Tagged , , , , , , , | Leave a comment